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Summary 
 

As a part of the Polymorphous Computing Architectures (PCA) program sponsored by the 
Defense Advanced Research Projects Agency (DARPA) [24], the project “A Multi-Time Scale 
Morphable Software Milieu for PCA-Composable, Scalable Systems” was funded to address  the 
research of PCA software system design and development. To support the use of these 
polymorphous computing systems, this program created a model-based software framework for 
reactive monitoring, optimization, modeling, resource negotiation and allocation, regeneration, 
and verification1.   

In order to meet the requirement that PCA application programs be created for the changing 
mission scenarios at runtime, this research proposed the idea that combinatorial optimization 
drives choice of components for missions.  In this architecture, a set of alternatives for “how” to 
do a certain operation are defined by component builders (programmers) and placed in 
component libraries (warehouses or repositories).  These components publish their capabilities 
and costs, and mathematical optimization is used to choose the best choices, based on the 
mission planner’s set of objectives (high speed, low power, low jitter, etc).  

An early prototype of multi-level polymorphous environment was developed. The prototype 
integrated Model-Driven Architecture (MDA), an advanced software engineering approach, into 
the design and development of the PCA application system. The research work and contributions 
included definition of componentization, morph types specification, and threaded VM decisions. 
The vision of this project is that polymorphous software environment is independent of PCA 
hardware. A fundamental view held through this research is that compilers do not perform global 
resource management.  Most of the next phase of the PCA work, which follows the current phase 
for which we were funded, emphasizes using compilers to handle certain optimization tasks, and 
the reader may wish to consult future results from these programs to determine exactly which 
kinds of optimizations are handled by compilers vs. component libraries in emerging PCA 
solutions of the coming years. 

Additionally, as a part of the team effort of the PCA research community, this project research 
contributed to standardization efforts of Morphware Forum to ensure software component 
approach across PCA morphable hardware. The research developed models and taxonomies to 
describe PCA hardware and software to reveal opportunities for performance, portability, 
evolvability, and optionality, elucidated requirements and capabilities of a full programming 
system for PCA, and developed component metadata definition and concepts. The concepts 
(performance, portability, evolvability, and optionality) address specific qualities of software that 
can be appreciated by different stakeholders in a mission or system program.  These features 
cross-cut between runtime behaviors for a specific mission (with hardware changing availability 
over a runtime), and the long-term “productivity” of software housed in component libraries, 

                                                 
1 Many of the terms described here and in the rest of the report are described in the Glossary (see pages 2-3) to make 
this presentation more accessible to people generally knowledgeable about computer science or computer hardware, 
but not necessarily about advanced architectures, high performance computing, or software engineering concepts. 
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targeted for PCA hardware (that may change over time).  The research and experiments 
conducted under this project identified the requirements for ways that high-level and low-level 
compilers help to provide the SAAL and SAPI abstractions (see the Glossary).  In other words, a 
model for how software and hardware would be assembled was provided from the outset, 
including the SAAL and SAPI abstractions, and this project provided an elaboration of how to 
build and use software on PCA hardware, consistent with the initial vision given by DARPA and 
subsequently ratified by the Morphware Forum.   

Highlights of this project report include the implementation of a model-driven PCA mission 
build chain, method for organizing complex systems as components, mapping metadata with 
components and system build tools, and automatic and user-driven selection of the “best” design 
alternatives for components given mission goals. Major concepts introduced in this report 
include interaction of the compilers and compile-time resource management tools at build time, 
interaction of the runtime system, dynamic resource manger, and PCA software at runtime, 
optimization driving choice of components for mission, and the use of metadata to control 
component optionality.   This model has not been fully adopted by the Morphware Forum, but 
represents a revolutionary approach to build applications with complex, heterogeneous (CPU and 
FPGA) and/or PCA hardware.  It is evident that the framework will be of interest in future 
versions of complex software systems with evolving mission requirements over different time 
scales. 

The key achievements summarized in this report include morphing diagram, integrated build 
architecture, componentization concepts, and metadata system design. The research 
achievements have had some significant impacts to the PCA research community. As reflected in 
the research materials published on Morphware Forum [21], these impacts include inputs to 
high-performance component design and specification, metadata system, component model 
unification, componentization, morph types specification, and threaded VM decisions. 
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Introduction 
 

The Polymorphous Computing Architectures (PCA) program [24] is a Defense Advanced 
Research Projects Agency (DARPA) effort “to develop a revolutionary approach to 
implementing embedded computing systems that support reactive, multi-mission, multi-sensor, 
and in-flight retargetable missions, and that reduce the time needed for payload adaptation, 
optimization, and validation from years to days to minutes” [23]. Unlike the traditional software 
development approach of “hardware first and software last,” the PCA program moves beyond 
conventional computer hardware and software to flexible, “polymorphous” computing systems. 
“A polymorphous computing system (chips, processing architecture, memory, networks, and 
software) will ‘morph’ (take on or pass through varying forms or implementations) to best fit 
changing mission requirements, sensor configurations, and operational constraints during a 
mission, for changing operational scenarios, or over the lifetime of a deployed platform” [23] . 

In many high performance applications, processing data from a sensor or a network of sensors 
network is required; radar, sonar, and multimedia applications all follow this paradigm.  Fast 
data traversal into and optionally out of the computer system is often required.  The need for high 
performance, flexible implementations of this type of applications is one of the major reasons 
that motivated DARPA to develop PCA technology [23]. 

An example to show the type and scale of a particular sample streaming sensor application is the 
Integrated Radar-Tracker (IRT) benchmark application created by MIT Lincoln Laboratory [14]. 
The IRT is a MATLAB-based “end-to-end specification of a modern intelligence, surveillance, 
and reconnaissance (ISR) radar system” [23]. Motivated by a space-based radar application, the 
IRT system “embodies all of the major attributes required in a defense-oriented PCA application 
test: both streaming and data-dependent threaded computation with multiple sub-types of each 
(e.g., fast transforms vs. vector-matrix arithmetic in the streaming elements); heavy 
computational loads; and multiple application-level parallelization and morphing opportunities” 
[23].  As a representative PCA application, the IRT benchmark is used in this project research for 
implementing the proposed model-driven PCA mission build chain, which is introduced in detail 
in a later section.  The final product of this research (called the story board), actually 
componentized the IRT benchmark, provided both a high-level and a low-level compilation, and 
demonstrated it running on an x86 laptop.  This working story board illustrated the viability of 
the build chain on actual working, but pre-production components based literally on the IRT 
benchmark, and including many of the advanced concepts proposed by this project. 

This project, “A Multi-Time Scale Morphable Software Milieu for PCA-Composable, Scalable 
Systems” described in this report concentrated on the research of PCA software design and 
development. To support the use of these polymorphous computing systems, this program 
created a model-based software framework for reactive monitoring, optimization, modeling, 
resource negotiation and allocation, regeneration, and verification. An experiment to implement 
a model-driven PCA mission build chain for the IRT benchmark application was conducted in 
this project in order to demonstrate the concepts and approaches proposed for the PCA software 
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development and engineering. The key concepts developed and the experiments conducted for 
this research project are introduced in the following sections. 

The rest of this report is organized as follows. The section “Methods, Assumptions and 
Procedures,” describes the methodology and experiments that were developed for a number of 
key aspects of the research; the section “Results and Discussion” addresses major technical 
achievements and most recent research results; The section “Conclusions and 
Recommendations” summarizes the project accomplishments and provides some 
recommendations for future research direction.  
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Methods, Assumption, and Procedures 
 
This section introduces the methodology and experiments, developed and conducted within the 
research of this project. With a focus on the key technical contributions, this section examines a 
set of critical concepts and approaches explored in the research. 
Metadata Concept and Integrated PCA Architecture 
Figure 1 illustrates the systematic strategy designed and developed in this project for building a 
morphable software program for a target PCA mission application. Metadata drives software 
morphing on different levels of the software and hardware architecture. Metadata is closely 
associated with source code of application components, and these two aspects together form a 
“metacode” structure. Metadata can be divided into off-line metadata and online metadata. Off-
line metadata is gained through long-term performance evaluation in experiments, while online 
metadata is obtained from runtime resource management tool. Based on the change of online 
runtime metadata, the system intelligently searches the design space of components and design 
alternatives. By checking the off-line metadata for each candidate, the system finally selects the 
most suitable candidate for composing optimal or near-optimal solutions.   
Predictive Model and Optimization 
One of the major efforts of the research was the investigation of a predictive model that can be 
integrated into the PCA build chain for future parallel application (extensions to what was 
achieved in this project). A predictive software model was designed to dynamically select 
parametric design alternatives for morphing application programs. This software model is 
supposed to input mission-specific metadata, meet resource constraints, and generate optimal 
composition of the application program. By appropriately handling data distribution, the program 
generated through this system executes on parallel resources and expects to achieve QoS in terms 
of memory and time in the presence of resource constraints.  In predictive models, the size, cost 
and space of a component’s runtime features can be known from a function that is stored along 
with the program component, and the evaluation of this function allows for decision making by 
other software to enhance the user program’s final outcome.   
The benchmark application for this experiment is a poly-algorithm application for parallel dense 
matrix multiplication on two-dimensional process grid topologies [18].  The basic assumption is 
that no single algorithm always achieves the best performance on different matrix and grid 
shapes. Base on this assumption, the objective of the experiment was to minimize time to 
solution while avoiding extensive data remapping. The key issue to be resolved is to determine 
under what situations an algorithm achieves the best performance. Various data distribution 
techniques including linear data distribution and block scattered data distributions were 
investigated. A prototype optimizer was designed using a dynamic programming approach for 
searching optimal program composition.   
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Figure 1. Integrated PCA Architecture 
 

“Final Morphware Diagram” 
There are many possible scenarios and situations in which a change in the configuration of a 
PCA system may be desired. Therefore, identifying and categorizing the types of these situations 
to aid in identifying the hardware and software services required by applications, operating 
systems, and run-time resource managers have become a key concern of the researchers in the 
PCA research community. The research of this project provides a major contribution to this 
collaborative effort. 

As eventually published online by the Morphware Forum [23], this categorization encodes three 
orthogonal aspects of the attributes of a morph. These are as follows: 
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•        whether the morph is initiated directly by an API2 call within the application code, or is it 
initiated by the run-time system or compiler invisibly to the application programmer; 

•        whether the physical resources allocated to the application must change or stay the same; 
and 

•        whether the components of the application (or the entire application) continue to execute 
or are reloaded or replaced. 

Figure 2, as published by Morphware Forum [23], summarizes the set of morph types resulting 
from these attributes. 

Figure 2. Final Morphware Diagram 

                                                 
2 API stands for “Application Programmer Interface” and is a means by which the SAAL and SAPI layers may 
provide access to certain functionality to a component (and therefore indirectly to a user).  As opposed to a 
component model that specifies capabilities and not literal code, an API model is needed for certain fixed 
capabilities, like morphing, in the PCA framework. 
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Figure 3. Morphware Compilation 
 

In September 2003, the Morphware Forum [21] released the morphware compilation diagram 
(Figure 3) as a fundamental PCA system architecture. In this architecture, applications are 
written in one or more of the source languages. The target platform and the set of possible 
configurations of the target platform are described using the PCA machine model metadata 
context. The researchers of the Morphware Forum (including the workers on this project) have 
also worked to define a metadata context for application information including a number of 
elements such as performance requirements (e.g., computational throughput, latency and power), 
input rates, and module interconnections. 

According to this architecture, “the high-level compiler is responsible for selecting the desired 
platform configuration, and for converting the SAPI source code to SAAL code. The high-level 
compiler performs coarse-grained parallelization of the input application, based on the 
granularity appropriate to the target platform. In order to accomplish this effectively, the high-
level compiler must have a description of the target platform. This description is provided in the 
PCA machine model metadata context, where the capabilities and resources of PCA platforms 
are described in terms of a common, high-level model that allows the high-level compiler to 
perform accurate performance estimates. The output from a high-level compiler is SAAL code 
and a desired initial platform configuration. Depending on the application source language, the 
SAAL intermediate code may be Streaming Virtual Machine (SVM) code, User Virtual Machine 
(UVM) code, or Threaded Virtual Machine-Hardware Abstraction Layer (TVM-HAL) code” 
[23]. 
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The low-level compiler is used to build an architecture-specific executable. “The low-level 
compiler accepts the SAAL code and desired platform configuration metadata output by the 
high-level compiler and produces native machine code suitable for execution on the target PCA 
platform. If a performance constraint, resource requirement, or desired configuration is 
unobtainable by a low-level compiler, that low-level compiler fails and reports the error” [23]. 

Conforming to the architecture diagram released by the Morphware Forum, the research of this 
project contributed in many aspects for detailed implementation of the mission building process 
that specifically demonstrated the feasibility of the morphware compilation architecture. A 
model-driven build chain was implemented to prove the concepts described above in detail. In 
the model-driven mission build chain, a method for organizing complex software systems as 
components has been examined. The issues investigated through the experiment include 
metadata specification, mapping metadata with components, user-driven selection of “best” 
alternatives for components given mission goals, and the automatic application program 
generation through high-level and low-level compilations. Additionally, a set of systematic ideas 
was proposed to show the interaction between the compilers and compile-time resource 
management tools at build time, as well as the interaction among the runtime system, dynamic 
resource manager, and PCA software at runtime. A compile-time resource management tool is 
proposed in order to select appropriate component alternatives. Meanwhile, the experiment of the 
project examined parametric component with metadata characteristics such as runtime 
performance and resource requirements. 

 
Componentization Concepts 

 
PCA application software is viewed as a component-based system. A major concern of the 
research of this project is identification of the PCA software component and componentization of 
PCA application software.  As defined in the glossary, a component holds software that defines 
certain functionality, and publishes requirements while offering features (e.g., “10 watts on 
architecture X for a 1,024 point single precision FFT.”)  Component-based software can be 
viewed as a composition of a set of the components. Specifically in the PCA mission build chain 
introduced in this report, for demonstration purposes, a component is narrowly defined as a 
reusable software functional unit, particularly a function block in a sequence of program 
operations, which is usually associated with a source code file that fully qualifies the capabilities. 

The research and experiments of this project shows that the software components are hierarchical. 
Given the metadata context information, certain components of an application may be 
dynamically replaced at runtime in order to meet the changing mission requirement and 
resources constraints. Moreover, design and implementation alternatives are explicitly 
represented in the hierarchy at any level. PCA Application is a component composed from a 
collection of components, component grouping specifications, abstract Virtual Machine 
specifications, and component-Virtual Machine element mappings. PCA mission is composed of 
PCA applications, Virtual Machine instantiation, component to physical Virtual Machine 
element mappings, mode-change rules, and mission constraints that govern application behaviors. 
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PCA Build Chain: A Model-Driven Problem Solving Environment 
  

In order to demonstrate the concepts for the PCA system architecture, metadata, and 
componentization, a PCA mission build chain demonstration was designed and implemented on 
MIT Integrated Radar Tracker (IRT) benchmark application [14]. As a model-driven architecture, 
this mission build chain provides a design approach using modeling technology, then derive 
application programs from the graphical models. Specifically, the mission build chain includes 
the following steps: 

 Application system and metadata modeling. 
 XML model parsing. 
 Multi-level compilation for intermediate code generation and architecture-specific binary 

generation. 
 Runtime execution. 
 Optimization with design space searching. 
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Figure 4. Modeling in PCA Build Chain  
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PCA Build Chain: System Modeling 
The PCA modeling uses GME graphical modeling interface. Generic Modeling Environment 
(GME) is a modeling toolset developed at Vanderbilt University [15]. GME is a configurable 
toolset that supports easy creation of domain-specific modeling. The primarily graphical, 
domain-specific models can represent an application and its environment, including software 
modules, hardware resources, and their relationship. GME provides a graphical user interface for 
visually designing PCA applications through a two-step process including metamodeling and 
domain-specific application modeling. GME can also assist software developers to synthesize 
application programs from the graphical models.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Metamodel in PCA Build Chain 
 

The modeling process requires two steps, metamodeling and domain-specific application system 
modeling. Metamodel, as shown in Figure 5, is an UML-based model that defines objects that 
can be instantiated and used in the application model [28]. Based on the definitions of 
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metamodel, developers can model a specific application in the application model shown in 
Figure 6, which is domain-specific for the IRT benchmark application. In the application model, 
the system component hierarchy and design alternatives are identified. Model component 
interaction and dependency are defined. Metadata values are assigned and associated with 
components and alternatives. Finally a XML representation of the model is exported [12]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Application Model in PCA Build Chain 
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PCA Build Chain: Program Generation 
Once a system model is created, a model processor parses the XML formatted model, and 
traverses through the model component hierarchy and retrieve metadata specification of each 
component while selecting optimal design alternatives. Finally, the model processor dynamically 
generates makefiles for intermediate code generation and compilation. 

The model processor parses XML model representation by utilizing the Universal Data Model 
(UDM) framework [32], developed at Vanderbilt University. UDM provides a set of supporting 
tools that are used to generate C++ programmatic interfaces from UML class diagrams of data 
structures. UDM command-line utility processes the XML representation of the metamodel and 
automatically generates a set of C++ interface files, including a C++ header file, a C++ 
implementation file, and a XML document type definition file. These files allow a C++ model 
processor program to easily access all components design in the graphical model. 
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Figure 7. Model Processing in PCA Build Chain  
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PCA Build Chain: Compilation 
As introduced in previous sections, the PCA application compilation process is a multilevel 
compilation that uses “High-level Compiler” and “Low-level Compiler” (see Figure 3). The 
“High-level Compiler” first collects the source code implementations of all the selected 
components designed in the model from a common source code repository. Then the compiler 
compiles all the selected pieces of the source code and generates the intermediate code, which is 
the Virtual Machines. This compilation step translates the application program from application 
source language to the intermediate language. The “Low-level Compiler” compiles the 
intermediate code and generates architecture-specific executables. Metadata is expected to be 
interpreted and generated for the resource manager at this level. 
PCA Build Chain: Runtime Execution 
Eventually, the binary executable program generated from the above steps is executed on the 
specified architecture. The metadata generated in the previous step is used by the resource 
manager and the application. 

“Metacode” Evolution 
The PCA mission build chain is a demonstration of the “metacode” concepts developed in the 
research. “Metacode” concept proposed in this research tightly associates the metadata 
information with PCA software components, so that these two key elements are seamlessly 
integrated with each other as a single PCA “metacode”. The combination of the metadata and 
components facilitates the nature of PCA system that the reconfiguration (“morphing”) is 
dependent upon the changing metadata information.  

According to the long-term vision, the metacode system will evolve following the steps 
illustrated in Figure 8. The metacode system development will gradually evolve from a set of 
dispersed modules into a seamlessly integrated system. 
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Other Academic Activities 
During the period of the project, a number of formal and informal academic activities were 
conducted. These activities are not only for the research progress, but also for supporting other 
research teams in the PCA community. These academic activities include close collaboration 
with Georgia Institute of Technology and the Space and Naval Warfare Systems Center San 
Diego through meetings, weekly conference calls, and discussions. The activities also include the 
efforts to get the entire forum to consider morphs as a major issue, showing that missions are a 
key level of concern and a single monolithic compilation is not the entire story of PCA software, 
as well as close collaboration with Vanderbilt University on the concept of morphable software 
milieu. Through these academic activities, many initial ideas were gradually developed and 
improved. These activities directly resulted in several significant contributions to the Morphware 
Forum in clarifying componentization concepts, developing metadata specification, and 
improving low-level threaded VM specification. 
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Results and Discussion 

 
With an emphasis on the PCA software development, the research and experiments of this 
project produced a number of key accomplishments. A storyboard of PCA mission building 
process was developed. A predictive software model with choices of parametric algorithms was 
investigated. Integration of metadata concepts with components and PCA tool chain was 
examined. Conforming to the PCA concepts defined by Morphware Forum [21], the milieu 
architecture and unifying system view were explored for integrating and elaborating SAAL, 
SAPI, compilers, runtimes, and the views developed during the research of this project. 

The innovative ideas, concepts and approaches gained through this research project have had 
certain impacts to the research in the field of High Productivity Computing System (HPCS). For 
instance, the model-driven architecture approach for developing the morphable software can be 
applied to clusters and HPCS type systems. A paper has been prepared for submission to journal 
to systematically discuss the concepts and approaches developed in this program. 

Notably, the research of the model-driven architecture in this project suggests a comparatively 
innovative perspective for software engineers to understand software development process. In 
convention, software design and decision-making are isolated from software coding and 
implementation. Time-consuming and painful work to redesign and re-implement solutions is 
inevitable when mission and runtime environment change. PCA application demands integration 
of design and implementation in order to rapidly make decision and automatically construct 
application. 

Graphical modeling language can be conceived as a high level programming language for 
decision-making, which employs visual form instead of textual syntax to express the same 
semantics. Associated with different model compilers, the design models can be compiled to 
lower level implementations in textual languages, such as Matlab or C. As high-level abstract 
design, the graphical models are portable across multiple textual source languages. The 
portability is enhanced by the standard XML model representation. 

Unlike a conventional programming language whose syntax and semantics are static, the 
graphical modeling language is configurable through metamodeling. Such modeling language 
can be configured to cover a superset of multiple conventional programming languages in terms 
of syntax and semantics. Even though initially configured to support a single source language, 
domain-specific model can be easily and rapidly reconfigured to cover broader range of source 
languages. 

Meanwhile, the modeling tool allows metadata gained through performance monitoring and 
experiments to be mapped on components and their alternatives. This facilitates design space 
exploration based on input runtime metadata information. 

The PCA mission build chain shows how source code implementation for components can be 
automatically extracted and composed into an application program. This capability of system 
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synthesis can be enhanced in the future through developing code generators to support automatic 
code generations for multiple languages. 

For optimization, the PCA mission build chain conceptually shows how different design 
alternatives can be dynamically selected based on different metadata to produce changing 
application composition. The design space exploration applying heuristic searching techniques 
will be a topic for separate study in the future [11, 13]. PCA application is expected to accept 
user program code in multiple source languages, and be able to execute application program on 
various hardware environments. In the multilevel compilation, the intermediate code plays a role 
of virtual machine to support portability and interoperability. Multilevel compilation strategy 
highly reduces the complexity of compiler development effort. 
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Conclusion and Recommendations 
 
To conclude, during the research of this project, a number of valuable and innovative concepts 
and approaches were explored. Several experiments were conducted and analyzed. These 
experiments demonstrated that the concepts and approaches studied during the research could be 
applied into the real world problem for PCA applications. These concepts include 
componentization of software, non-functional parametric information specifications, application 
system modeling, and dynamic morphing of PCA application program. 

The research accomplishments gained from the research are suitable for future publications. 
Besides the academic accomplishment of the research, the toolkit prototyped and implemented 
under this project leaves wide space for future commercialization. 

In addition, the research would benefit other research areas in the field of compute science. As a 
software engineering approach, the model-driven software development and engineering 
methodology employed and investigated in this research project suggested some innovative 
concepts for software engineering research. The experiments of this research reveal that the 
model-driven architecture can be an effective and promising approach to solve software 
engineering problems and increase productivity of software development. This innovative 
research perspective may lead to some reconsideration of conventional software engineering 
approaches. These topics are worthy of further research. 

For the future work, the vision of polymorphous software environment independent of PCA 
hardware will be further developed. A continuing effort to develop the “metacode” concept 
would help produce a real product for PCA software development. Further research on metadata 
and component interactions will be needed. 

The prototype of the PCA mission build chain developed in the project can be improved towards 
an Integrated Design and Development Environment (IDDE). Such an IDDE has identifiable 
benefits for program definition, optimization, and evolution, by addressing multiple concerns 
simultaneously. These concerns include optionality, morphability, and evolvability as primary 
software requirements. 

Based on the current achievement, the future effort to improve the PCA mission building process 
may include the following specific tasks: 

• Develop resource manager for handling runtime metadata; 
• Develop performance monitoring tool that collects QoS for specifying off-line metadata 

in design time; 
• Develop runtime scheduler for prioritizing runtime tasks; and, 
• Develop optimizer by employing design space searching techniques for runtime 

morphing. 

The Integrated Software Design and Development Environment (IDDE) will be suitable for 
modeling component-based software and hardware system, specifying and mapping mission 
parameters and resource constraints, automatically generating sequential and/or parallel 
programs, and compiling application program on targeted hardware for runtime execution. 
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Glossary 
 
Component 
A component is a software construct or entity that is specified or designed to encapsulate 
functionality into a single unit, normally with specific interfaces (input-outputs). According to 
[26] and other general understanding of components in Computer Science, a component can be 
viewed as a load-balancing unit, an entity with a specific/well-defined computational 
functionality (such as a basic algorithm or data motion operation plus computation), or a 
compiler optimization unit (such as a cache reorganization step or copy step). Components may 
be code level component that encapsulate functions (such as a FFT) or virtual machine level 
component to encapsulate machine code and state needed to be viable in an execution 
environment. Component-based software can be viewed as a composition of a set of the 
components, where different compositions are chosen within and between programs in order to 
create hierarchies, sequences and dataflows, plus feedbacks. In the PCA mission build chain 
introduced in this report, a component is narrowly defined as a reusable software functional unit, 
particularly a function block in a sequence of program operations that is usually associated with 
a source code implementation file.  Components often publish their requirements and their 
capabilities as part of “meta data.” 

Design Alternative 
For a component there may be one or more algorithmic implementations that achieve the same 
functionality, while one of the options is chosen for application construction. These options are 
defined as design alternatives, and the capability to allow user select options is defined as user 
optionality. Sometimes, these are also called “poly-algorithms.3” Functionally equivalent design 
alternatives are statically modeled in design time and dynamically selected by scheduler at 
runtime to meet changing runtime environment and mission parameters. Design alternatives are 
resolved through design space exploration to produce optimal composition of application 
program. 

Domain-specific Model 
In the GME modeling environment (mentioned next), a domain-specific model is the design 
model of the target application system.  A Domain-specific model visually represents the 
structure of the system, such as data flow, control flow, and hardware architecture. It is 
composed of the instances of objects defined in the metamodel and conforms to all the rules and 
constraints defined by the metamodel. 

Generic Modeling Environment (GME) 
GME is a modeling toolset developed at Vanderbilt University. GME is a configurable toolset 
that supports easy creation of domain-specific modeling. “The primarily graphical, domain-
specific models can represent an application and its environment, including software modules, 
hardware resources, and their relationship” [15]. GME provides a graphical user interface for 
visually designing PCA applications through a two-step process including metamodeling and 
domain-specific application modeling. GME can also assist software developers to synthesize 
application programs from the graphical models. 
                                                 
3 A term classically coined by Dr. John Rice of Purdue University in relationship to problem-solving environments. 
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Integrated Radar-Tracker (IRT) System 
As a PCA benchmark application, the Integrated Radar-Tracker (IRT) system is “an end-to-end 
specification of a modern intelligence, surveillance, and reconnaissance (ISR) radar system. 
Motivated by a space-based radar application, it embodies all of the major attributes required in a 
defense-oriented PCA application test: both streaming and data-dependent threaded computation 
with multiple sub-types of each (e.g., fast transforms vs. vector-matrix arithmetic in the 
streaming elements); heavy computational loads; and multiple application-level parallelization 
and morphing opportunities. Developed by MIT Lincoln Laboratory (MIT/LL), the benchmark 
consists of a MATLAB simulation that serves as an executable specification, sample data sets, 
spreadsheets for estimating the computational loading of the application, and instructions for 
installation and operation” [23]. 

Metadata 
As described in [23], “PCA systems are designed to meet a variety of goals and constraints, and 
to function on a wide variety of platform configurations. PCA applications require a large 
amount of information in addition to the procedural definitions of programs in source languages. 
Examples of this information are the computing resources available on a particular host platform, 
the set of possible configurations of these resources, desired optimization goals for a particular 
piece of software, and computing resources required by a particular piece of compiled software. 
This set of descriptive and extra-functional information is known collectively as metadata.” 

Metamodel 
As a generic configurable modeling environment, GME requires a configuration step that must 
be taken before anything meaningful can be done. The configuration process itself is also a form 
of modeling, the modeling of a modeling process. This is called metamodeling. The output of the 
metamodeling process is a compiled set of rules represented in the metamodel paradigm that 
configures GME for a specific application domain. The metamodel paradigm is based on the 
Unified Modeling Language (UML) [31]. 

Morphing 
“The PCA program is building advanced computer architectures that can re-organize their 
computation and communication structure to achieve better overall application performance” 
[14]. The reorganization is referred to as morphing. A morphing process can be considered an 
optimization process that dynamically selects optimal alternative implementation for the 
changing execution environment determined by mission requirement and hardware resource 
availability. Morphing capability plays a critical role in reactive software system. The application 
software program produced through morphing is supposed to be adaptive to the architecture-
specific execution environment. 
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Stable Architecture Abstraction Layer (SAAL) 
The SAAL, a concept developed by the Morphware Forum, is “a set of portable APIs that 
encapsulate abstractions of the computing resources present in PCA devices, as well as the 
operations on those resources used by the PCA source languages and APIs. This portability layer 
abstracts and simplifies PCA hardware for the source languages, and provides a consistent 
abstract set of resource types and functional support requirements for PCA hardware developers. 
The SAAL portability layer also simplifies the deployment of new PCA platforms and new 
source languages and APIs by providing a single common target for each. New languages and 
APIs must only provide a mapping to the SAAL portability layer, instead of build tools targeting 
every possible target platform. New PCA platforms need only supply a compiler for the SAAL to 
work with all of the existing source languages and APIs” [23]. 

Stable Application Programming Interface (SAPI) 
The SAPI is a concept developed by the Morphware Forum. In a PCA application, “the source 
languages and APIs collectively are referred to as the Stable Application Programming Interface 
(SAPI) layer. The top-level input at the SAPI level is processed by the high-level compiler (HLC) 
appropriate to the source language(s) used. The high-level compiler outputs SAPI code, which is 
the input to the low-level compiler (LLC) for the target PCA platform of choice” [23]. 

Virtual Machine (VM) 
The VM is an abstract machine for which an interpreter exists (such as another program, or a 
computer processing unit). Virtual machines are often used in the implementation of portable 
executors for high-level languages. The high-level language is compiled into code for the virtual 
machine (an intermediate language), which is then executed by an interpreter written in assembly 
language or some other portable language like C or Java.     
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